Subject: Physics (PH 101)

No. of	Contents for Class
Classes	
	Introduction to Physics course syllabus, Introducing students to the evaluation/grading procedure,
Lecture 1	Mark distribution in each examination (Class test, mid-term, end-term)
Lecture 2	Introduction to vibration and oscillation, simple harmonic oscillator: equation of motion, general
	solution, Characteristic of SHM: amplitude, time period, phase velocity, acceleration, total energy
Lecture 3,4	Damped harmonic motion: damping forces, practical examples of damped oscillation, equation of
	motion for damped oscillation, solution at different damping conditions: weak, large and critical
	damping
Lecture 5	Forced oscillation of a damped harmonic oscillator, general solution to equation of motion,
Lecture 6,7	Steady state solution for forced oscillation, low frequency, high frequency and mid frequency
	conditions for forced oscillation, Resonance, power of forced oscillator
Lecture 8	Coupled oscillation: equation of motion for coupled oscillation, solutions
Lecture 9	Introduction of normal modes and normal coordinate
Lecture 10	Maxwell's equation: Electrodynamics before Maxwell
Lecture 11	Displacement current, Maxwell's equation in vacuum
Lecture 12	Maxwell's equation in matter. Boundary conditions
Lecture 13	Conservation laws: Continuity equation, Poynting's theorem
Lecture 14	Electromagnetic waves: The wave equation, Sinusoidal waves, Polarization
Lecture 15, 16	EM waves in vacuum, Monochromatic plane waves, Energy in electromagnetic waves, EM waves in
	matter,
Lecture 17, 18	Reflection and transmission at normal incidence
Lecture 19,20	Reflection and transmission at oblique incidence
Lecture 21	EM waves in conductors, Reflection at a conducting surface
Lecture 22	Origin and history of quantum mechanics, particle aspect of the wave and vice-versa, matrix and
	wave mechanics
Lecture 23	Particle aspect of wave – blackbody radiation, photo-electric effect, Wave aspect of particle - de
	Broglie's hypothesis, matter wave
Lecture 24	Electron diffraction: Davison-Germer experiment, Particle vs wave: classical scenario & quantum
	scenario – double slit experiment
Lecture 25	Wave particle duality, Heisenberg's uncertainty principle, wavefunction, its properties and
	probabilistic interpretation
Lecture 26	Wave packets, group velocity & phase velocity and relation between them in dispersive medium

Lecture 27	Development of the wave equation, Time dependent Schrödinger equation
Lecture 28	Introduction to wave function, Probabilistic interpretation of wave function, Probability density
Lecture 29	Quantum mechanical operators (position, momentum, energy), expectation value, correspondence
	principle, Eigen functions, Eigen value
Lecture 30	Stationary states, Time independent Schrödinger equation
Lecture 31	Infinite square well problem, allowed energies and wavefunctions, Normalization, expectation values
Lecture 32, 33	Potential barrier problem, tunneling phenomena, example of α -particle decay
Lecture 34	Classical theory of electrical conduction, Drude model; Success and failures of classical model;
Lecture 35	Band theory of solid (Qualitative description); Classification of materials on the basis of band theory
	of solids (qualitative description); Bloch's quantum theory of electrical conduction (Qualitative);
Lecture 36	Distribution of electrons between the energy states-the Fermi-Dirac distribution; temperature
	variation of Fermi-Dirac distribution function;
Lecture 37,38	The density of energy states (using free electron model) of metal in 3-D; Estimation of Fermi energy
	for metals
Lecture 39	Fermi surface and Fermi Velocity; Intrinsic and Extrinsic semiconductors; Charge carriers in
	semiconductor; Concepts of hole; Free electron model applied to semiconductors
Lecture 40	The Hall effect. Magnetoresistance

References

- 1. Quantum Physics, Resnick and Eisberg
- 2. Vibration and waves, A. P. French
- 3. Introduction to Electrodynamics, D. J. Griffiths
- 4. Quantum Mechanics, D. J. Griffiths
- 5. Solid State Physics, A J Dekker
- 6. The Physics of Solid, R Turton